$$a = \frac{v^2}{r}$$
 F=ma

Circular Motion Problems

"Daredevil Nick," the stunt motorcycle rider, is attempting to perform the 'Wall of Death' act.
He needs to ensure a centripetal acceleration of 20 m/s², so as to not fall down. The wall of
death is 15 m in diameter. How fast must Nick ride to complete the act successfully?

$$a = 20 \text{ m/s}^2$$
 $r = 15/2 = 7.5 \text{ m}$
 $v = ?$
 $15/2 = 7.5 \text{ m}$
 $15/2 = 7.5 \text{ m/s}^2 = 0$

2. A 15 kg mass is swung in a circular path of radius 2.3 m by a centripetal force of 2000 N. What is the velocity of the whirling mass?

$$m = 15 \text{kg}$$
 $F = m(\frac{v^2}{V})$ $7306.67 = \sqrt{2}$ $Y = 2.3 \text{ m}$ $Y = 2000 \text{ N}$ $Y = 2000 \text{ N}$ $Y = 7$ $Y = 7$

3. A ball is tied to a 1.3 m string and whirled in a circular motion with a force of 220 N. If its speed is 6 m/s, (a) what is it centripetal acceleration?

don't
$$V = 1.3 \text{ m}$$
 $V = 1.3 \text{ m}$
 $V = 1.3 \text{ m}$

(b) What is the mass of the ball?

$$F = ma$$

$$220 = m(27.69)$$

$$27.69$$

$$27.69$$

$$17.95 = m$$

4. A 0.40 kg mass is attached to a string 1.2 m long and swings in a horizontal circle. The mass goes around its path once each 0.31 second. (a) How fast is it moving?

$$v = \frac{d}{t}$$
 $m = 0.40 \text{ Kg}$
 $v = \frac{2TTr}{t}$ $r = 1.2m$
 $t = 0.31s$
 $v = 7$

$$V = 2HV$$
 $V = 2H(1.2)$
 $V = 7.54 \text{ m/s}$

(b) What is its centripetal acceleration?

$$a = \frac{V^2}{r}$$

$$a = \frac{(7.54)^2}{1.2}$$

$$a = \frac{56.85}{12}$$

$$a = 47.38 \text{ m/s}^2$$

5. The Earth (mass 5.98×10^{24} kg) orbits the sun at a distance of 1.50×10^{11} m and a speed of 29,865 m/s. (a) What is its centripetal acceleration?

$$m = 5.98 \times 10^{24} \text{ kg}$$
 $a = \frac{V^2}{r}$
 $r = 1.5 \times 10^{11} \text{ m}$
 $v = 29,865 \text{ m/s}$ $a = \frac{(29,865)^2}{1.5 \times 10^{11}} = \frac{0.0059 \text{ m/s}^2}{5.9 \times 10^{-3} \text{ m/s}^2}$

(b) What is the centripetal force and what force provides it?

$$m=5.98\times10^{24}$$
 $F=ma$
 $\alpha=5.9\times10^{-3}$ $F=(5.98\times10^{24})(5.9\times10^{-3})$
 $F=3.62\times10^{22}$ N